Volume **³⁴**I

Number **2**

January 18, 1995

Inorganic Chemistry

0 Copyright 1995 by the American Chemical Society

Communications

Synthesis of the New Asymmetric Tripodal Amine Ligand abap: Crystal Structure of $[Co(abap)(O₂NO)]$ ($ClO₄$)₂ and Stability and Reactivity of $[Co(abap)(OH₂)₂]$ ³⁺ toward Phosphate Esters¹

Rachel L. Fanshawe and Allan G. Blackman"

Department of Chemistry, University of Otago, **P.O.** Box *56,* Dunedin, New Zealand

Received August 24, 1994

Cobalt(III) complexes of the type $[Co(N_4)(OH_2)_2]^{3+}$ have been found to be effective reagents for the hydrolysis of organic esters,² peptides,³ amides,⁴ nitriles,⁵ and phosphate esters⁶ at neutral pH. The rates of these hydrolysis reactions depend markedly on the nature of the N₄ ligand system,⁷ and the *trans* form of the complex appears to be inactive. 8 Interest has focused on $Co(III)$ complexes of the tripodal tetraamine ligands tren and trpn, in which the aqua ligands are constrained in a *cis* orientation. Studies by Milburn and co-workers⁹ and subsequent investigations by Chin's group¹⁰ have shown $[Co(trpn)(OH₂)₂]$ ³⁺ **(1)** to be extraordinarily reactive as a hydrolytic agent for activated and cyclic phosphate mono- and diesters. These studies have shown **1** to be much more reactive in such hydrolysis reactions than the tren complex $[Co(then)(OH₂)₂]$ ³⁺ (2) .^{11,12} This difference in reactivity has been ascribed in part to the greater flexibility of the trpn ligand, which allows facile

- (1) Abbreviations used: $\text{trp} = \text{tris}(3\text{-aminopropyl})$ amine; $\text{tren} = \text{tris}(2\text{-emil}$ aminoethyl)amine; $abap = N-(2- \text{aminoethyl})-N$, $N-bis(3- \text{aminopropyl})$ amine.
- **(2)** Chin, J.; Banaszczyk, M. *J. Am. Chem.* **SOC. 1989, 111, 2724.**
- (3) (a) Buckingham, D. A.; Collman, J. P. *J. Am. Chem. SOC.* **1963,** *85,* **3039.** (b) Buckingham, **D.** A.; Collman, J. P.; Happer, D. A. R.; Marzilli, L. G. *J. Am. Chem.* **SOC. 1967, 89, 1082.** (c) Kimura, **E.;** Young, S.; Collman, J. P. *Inorg. Chem.* **1970, 9, 1183.**
- **(4)** Takasaki, B. K.; Kim, J. H.; Rubin, E.; Chin, J. *J. Am. Chem. SOC.* **1993, 115, 1157.**
- *(5)* (a) Chin, J.; Kim, J. H. *Angew. Chem., Int. Ed. Engl.* **1990, 29, 523.** (b) Kim, J. H.; Britten, J.; Chin, J. *J. Am. Chem. Soc.* **1993**, 115, 3618.
- **(6)** (a) Kenley, R. F.; Fleming, R. H.; **Laina,** R. M.; Tse, D. S.; Winterle, J. S. *Inorg. Chem.* **1984, 23, 1870.** (b) Haight. **G.** P. *Coord. Chem. Rev.* **1987, 79,293.** (c) Matsumoto, **Y.;** Komiyama, M. *J. Chem. SOC., Chem. Commun.* **1990,** *1050.* (d) Vance, D. H.; Czamik, A. W. *J. Am. Chem.* **SOC. 1993,** *115,* **12165.**
- **(7)** Chin, J.; Banaszczyk, M.; Jubian, V. *J. Chem.* Soc., *Chem. Commun.* **1988, 735.**
- (8) Although the intramolecular mechanism proposed for these reactions effectively eliminates the *trans* species as a reactant, **this** assumption does not appear to have been *explicitly* experimentally verified.
- **(9)** (a) Rawji, **G.;** Hediger, M.; Milbum, R. M. *Inorg. Chim. Acta* **1983, 79,247.** (b) Tafesse, **F.;** Massoud, S. S.; Milburn, R. M. *lnorg. Chem.* **1985, 24, 2591. (c)** Tafesse, **F.;** Milburn, R. M. *Inorg. Chim. Acta* **1987,135, 119.** (d) Tafesse, **F.;** Massoud, S. S.; Milburn, R. M. *Inorg. Chem.* **1993, 32, 1864.**
- **(10)** (a) Chin, J. *Acc. Chem.* Res. **1991,24, 145** and references therein. (b) Chin, J.; Banaszczyk, M.; Jubian, V.; Kim, J. H.; Mrejen, K. In *Bioorganic Chemistry Frontiers;* Dugas, H., Ed.; Springer-Verlag: Berlin, Heidelberg, **1991;** Vol, **2,** pp **175-194** and references therein.
- **(11)** Tafesse, F.; Massoud, **S.** S.; Milburn, R. M. *Inorg. Chem.* **1993, 32, 1864.**

intramolecular attack of coordinated hydroxide at the phosphorus center of the bound ester.12 Crystal structural data suggest that **1** is better able to accommodate formation of the strained fourmembered phosphato chelate ring by opening the *trans* angle to *ca.* 100° ¹³ However an attempt to hydrolyze the phosphate ester linkage in vitamins B_{12} and B_{12a} (pD 5 and pD 7, 25-45) "C)14 resulted in reduction of *1* to Co(I1) *via* oxidative N-dealkylation of the coordinated trpn ligand.15 In contrast, **2** was stable toward decomposition under all conditions studied. The low stability of **1** and the (relatively) low reactivity of 2 preclude their use in biological hydrolysis reactions.

We herein report the synthesis of the new asymmetric tripodal tetraamine ligand abap. We have also prepared and characterized Co(1II) complexes of abap and detail preliminary results on the stability and reactivity of the diaqua complex toward phosphate esters. abap $4HCl_{2.5H₂O}$ was synthesized as follows. To a melt of diphthaloyldipropylenetriamine¹⁶ (27.7 g, 71 mmol) at 155 "C was added solid **(2-bromoethy1)phthalimidel7** (18 g, 71 mmol) in portions over 10 min. The mixture was stirred at 160-170 "C for 45 min and allowed to cool. The solid mass was ground to a powder and refluxed in 8M HCl (300 mL) for 11 h. After cooling in ice and removal of phthalic acid, the filtrate was reduced to dryness (rotavap). The crude product was dissolved in water *(ca.* 80 mL), the mixture filtered (Celite), and the filtrate added dropwise with stirring to EtOH *(500* mL). The resulting precipitate was removed by filtration and suspended in hot EtOH *(ca.* 270 mL). Water (65 mL) was added,

- **(12)** Chin, J.; Banaszczyk, M.; Jubian, V.; **Zou,** X. *J. Am. Chem. SOC.* **1989,** *111,* **186.**
- **(13)** Connolly, J. **A.;** Banaszczyk, M.; Hynes, R. C.; Chin, **J.** *Inorg. Chem.* **1994, 33, 665.**
- **(14)** Calafat, **A.** M.; Marzilli, L. G. *Inorg. Chem.* **1992, 31, 1719.**
- **(15)** (a) Calafat, A. M.; Marzilli, L. G. *Inorg. Chem.* **1993, 32, 2906.** (b) We have observed a similar decomposition of a $Co(III)$ -tepa complex (tepa = **tris[2-(2-pyridyl)ethyl]amine):** Baxter, K. E.; Blackman, A. G. Manuscript in preparation.
- **(16)** Sweater, M.; Taylor, P. D.; Hider, R. C.; Porter, J. *J. Med. Chem.* **1990, 33, 1749.**
- **(17)** Wubbels, **G.** G.; Halverson, A. M.; Oxman, J. D.; De Bruyn, V. H. J. *Org. Chem.* **1985, 50, 4499.**

Figure 1. Structures **of** the tripodal amine ligands.

followed by another portion of EtOH (250 mL). Cooling in ice gave the pure product as white crystals $(8.7 \text{ g}, 34\%)$.¹⁸

Co(II1) complexes of abap were prepared by air oxidation of Co(I1) species. This contrasts with reported syntheses of trpn complexes, where a stronger oxidant (PbO₂) is required¹⁹ and suggests the resulting Co(II1) abap complexes should be less prone to reduction. Air oxidation of a solution of Co- $(CIO₄)₂·6H₂O$, ligand, and NaNO₂ gave the peroxo-bridged dimer $[(abap)(NO₂)CoO₂Co(NO₂)(abap)]²⁺ (3).²⁰$ Acid hydrolysis of 3 in dilute aqueous $HNO₃$ and addition of NaClO₄ gave [Co(abap)(02NO)](C104)2 **(4)** in good yield.21 A 13C *NMR* spectrum of the product in D_2O showed peaks attributable to both possible geometric isomers of the hydrolysis product of **4** (below) but recrystallization from dilute aqueous $HNO₃/NaClO₄$ afforded isomerically pure **4.** X-ray structural analysis of **4** confirmed the presence of a chelating NO_3^- ligand.²² Such species are rare in Co(III) chemistry, with only $[Co(bipy)₂(O₂ NO$]($NO₃$)(OH) \cdot 4 $H₂O$ having been previously synthesized in aqueous solution.23 Figure *2* shows an ORTEP diagram of the $[Co(abap)(O₂NO)]²⁺$ cation. The usual octahedral geometry about the Co(II1) atom is severely distorted by the chelating $NO₃⁻$, with the angle $O₁-Co₁-O₂$ being 66.1°. This angle is smaller than that observed in both $Co(O_2NO)_3 (68^\circ)^{24}$ and [Co- $(bipy)_2(O_2NO)[NO_3)(OH)4H_2O (70°)^{23}$ and is also smaller than the corresponding angle in a number of the structurally related

- (18) Anal. Calcd (found) for $C_8H_{22}N_4$ ⁴HCl².5H₂O: C, 26.31 (26.00); H, 8.56 (8.14); N, 15.35 (14.85); C1, 38.83 (38.90). 'H NMR **(Dz0):** 6 3.53 (m, 4H), 3.37 (m, 4H), 3.12 (t. 4H), 2.16 (m, 4H). 13C NMR **(Dz0):** 6 51.7, 50.5, 37.7, 35.0, 22.9.
- (19) (a)Massoud, S. **S.;** Milbum, R. M. *Inorg. Chim. Acta* **1988,154,** 115. (b) Banaszczyk, M.; Lee, J. J.; Menger, F. M. *Inorg. Chem.* **1991,30,** 1972. (c) Fanshawe, R. L.; Blackman, A. *G.* Unpublished results.
- (20) Preparation of $[(abap)(NO₂)CO₂Co(NO₂)(abap)](ClO₄)₂: To a solution of abap⁴HCl².5H₂O (4 g, 11 mmol) in aqueous NaOH (80.0$ mL, 0.5 M) were added $Co(ClO₄)₂·6H₂O$ (4 g, 11 mmol) in water (12 mL), NaN02 (1.08 g, 16 mmol) in water (12 mL) and solid NaClO₄ H_2O (9.2 g, 65 mmol). Air was bubbled through the solution for 1.5 h, and the resulting brown precipitate was removed by filtration, washed with EtOH and then Et₂O, and air-dried $(3.6 g, 95 \%)$. Anal. Calcd (found) for C₁₆H₄₄Cl₂Co₂N₁₀O₁₄H₂O: C, 23.80 (23.74); H, 5.74 (5.68); N, 17.35 (17.42); C1, 8.78 (8.99). *[Caution:* Perchlorate salts should be handled with care.]
- (21) Preparation of $[Co(\text{abap})O_2NO](ClO_4)_2$: A solution of the peroxo dimer $(1.\overline{0} \text{ g})$ in HNO₃ (20 mL, 5 M) was stirred at room temperature for 1 h and then reduced to near dryness (rotavap). The resulting purple solid was dissolved in the minimum of hot water and reprecipitated by addition of excess NaC104. The solid was recrystallized from cold nitric acid (3 M) by adding NaC104 and cooling in ice. The pure product was washed with MeOH and dried in vacuo (0.76 g, 61%). Crystals suitable for X-ray study were obtained on addition of MeOH to the filtrate and storage of the solution for 2 weeks. Analytical and NMR data obtained using the crystallographic sample were identical to those of the bulk material. Anal. Calcd (found) for $C_8H_{22}Cl_2$ -CON5011: C, 19.44 (19.23); H, 4.49 (4.25); N, 14.18 (14.25); C1, 14.35 (14.39).
(22) Crystal data (-142 °C) for C₈H₂₂Cl₂CoN₅O₁₁: orthorhombic, *Pbca*,
- (22) Crystal data (-142 °C) for C₈H₂₂Cl₂CoN₅O₁₁: orthorhombic, *Pbca, a* = 15.592(3) Å, *b* = 11.925(2) Å, *c* = 18.616(4) Å, $\alpha = \beta = \gamma$ = 90°, $V = 3461.4(12)$ \mathring{A}^3 , $Z = 8$, $d_{\text{cald}} = 1.896$ g cm⁻³. Refinement of the structure converged with $R1 = 0.0551$ for 1930 reflections with $F_0 > 4\sigma(F_0)$ and wR2 = 0.1203 for all 3050 data.
- (23) Reimann, C. W.; Zocchi, M.; Mighell, A. D.; Santoro, A. *Acta Crystallogr.* **1971,** *827,* 221 1.
- (24) Hilton, J.; Wallwork, S. C. *J. Chem.* **SOC.,** *Chem. Commun.* **1968,** 871.

Figure 2. ORTEP view of the cation of **4** with thermal ellipsoids drawn at the 50% probability level. Selected bond distances **(A)** and angles (deg): Col-N1 1.959(5), Col-N3 1.946(5), Col-N4 1.968(5), Col-N5 1.927(5), Col-01 1.956(4), Col-02 1.950(4), N2-01 1.284(6), N2-02 1.287(6), N2-03 1.195(6); 01-C01-02 66.1(2), 02-Col-**N5** 96.4(2), NS-Col-N4 97.6(2), N4-Col-01 99.9(2), 02-C0l-N4 166.0(2), O1-Co1-N5 162.5(2), N1-Co1-N3 175.1(2).

 $[Co(N₄)(O₂CO)]²⁺ complexes.²⁵$ This distortion causes the $N-Co-N$ bond angle in the equatorial plane to open to $>90^{\circ}$, and as found in the trpn system, this angle is opened significantly (97.6°) .¹³ Within the nitrate ligand, the *exo* N-O bond (N2-03) is significantly shorter than the others, a feature observed previously in $Co(O_2NO)_3^{24}$ and $[Co(bipy)_2(O_2NO)]^{2+}.^{23}$

On dissolution in water, **4** is hydrolyzed rapidly to [Co(abap)- $(OH₂)₂$ ³⁺ (5). Attempts to isolate solid 5 using noncoordinating anions $(CIO_4^-$, $CF_3SO_3^-$, PF_6^-) were unsuccessful. Potentiometric titration of solutions of 5 at 25.0 °C gave pK_a values for the bound waters of 5.15 and 7.01. Preliminary studies have shown **5** promotes hydrolysis of both mono- and bis(pnitrophenyl) phosphate in aqueous solution at pH 5-7. Reaction of *5* with the monoester in D20 was monitored by 31P NMR spectroscopy at pD 6.5. Spectra obtained immediately after mixing clearly showed 2 peaks (δ 7.3, 7.7 ppm; chemical shifts relative to external H₃PO₄, δ 0.0 ppm) in a 6:1 ratio, assigned to the two possible geometric isomers of the monodentate coordinated phosphate ester. Subsequent spectra showed decay of these over time to give one peak at δ 23.8 ppm assigned to the chelated phosphato complex $[Co(abap)(O₂PO₂)]$ ²⁶ UV/vis spectroscopy (400 nm) confirmed liberation of the p -nitrophenolate ion. Rate data for the reaction of *5* with bis(pnitrophenyl) phosphate (BNPP) were obtained spectrophotometrically at varying $[H^+]$ by monitoring the absorbance increase at 400 nm (50 °C, $[Co] = 0.01$ M, initial $[BNPP] =$ 1.67×10^{-5} M). Values of k_{obs} at pH 5.95, 6.44, and 6.86 were 4.1×10^{-3} , 5.0×10^{-3} , and 4.5×10^{-3} s⁻¹, respectively. These results show *5* to be much more reactive toward BNPP than $2(70-100)$ times faster) and to be comparable in reactivity

⁽²⁵⁾ Buckingham, D. A,; Clark. C. R. *Inorg. Chem.,* in press.

⁽²⁶⁾ Chin, J.; Banaszczyk, M. *J. Am. Chem. Soc.* 1989, 111, 4103.

to both **1** $(2-4$ times slower) and $[Co(cyclen)(OH₂)₂]^{3+}$ (6) (approximately equal). 12

As expected, *5* proved to be more stable toward reduction to Co2+ than **1.** 'H **NMR** spectra of a solution of *5* in 0.08 M DC104 held at 48 "C obtained over *5* days showed a slight change in the appearance of the methylene protons (possibly due to isomerization of the complex) but no $Co²⁺$ -induced line broadening was detected over this time. The UV/vis spectrum of the final solution showed no features due to $Co(II)$ species, and a chemical test for Co^{2+} (SCN⁻) proved negative. A solution of 5 (0.02 M) in 1 M HClO₄ also showed no change in its UV/vis spectrum over 36 h at *25* "C. Under acidic conditions, 1 was found to decompose.^{14,15a}

The enhanced stability of *5* relative to **1** and observations of its reactivity toward phosphate esters are encouraging. The presence of the ethylene arm in the abap ligand apparently confers stability on *5* due to the formation of a rigid fivemembered chelate ring, while the propylene arms allow sufficient flexibility for the complex to react with phosphate esters at rates comparable to those for **1.** We are currently investigating the reactivity of **5** toward a number of activated and unactivated phosphate esters.

Acknowledgment. We thank Professor W. T Robinson (University of Canterbury) for the X-ray data collection and Dr. L. R. Hanton for assistance with the crystallography. This work was supported by a grant from the Division of Sciences, University of Otago.

Supplementary Material Available: Text giving structure solution details and listings of crystal data, structure refinement parameters, all atomic coordinates, isotropic thermal parameters, bond lengths, bond angles, and anisotropic thermal parameters for **4** (6 pages). Ordering information is given on any current masthead page.

IC94 1003D